
ChE 344
Reaction Engineering and Design

Lecture 20: Tuesday, March 29, 2022

Unsteady State Reactor Design + Safety, cont.

Reading for today’s Lecture: Chapter 13

Reading for Lecture 21: Chapter 9





On Thursday: Safety for exothermic reactions

Reactor ‘runaway’ if this is too large

𝑑𝑇

𝑑𝑡
=

∆𝐻𝑟𝑥𝑛 𝑟𝐴𝑉

ሶ𝑄𝑔𝑏 𝑜𝑟 ሶ𝑄𝑔𝑠

− 𝐹𝐴0 σ 𝜃𝑖𝐶𝑃,𝑖 𝑇 − 𝑇0 + 𝑈𝐴 𝑇 − 𝑇𝑎

ሶ𝑄𝑟𝑠

σ 𝑁𝑖𝐶𝑃,𝑖
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• Derive the unsteady state energy balance

• How to solve a batch, adiabatic reactor

• Unsteady state reactors with heat exchange

• CSTRs/semi-batch reactors

•  ሶ𝑄𝑔𝑠 (generated heat from reaction)

•  ሶ𝑄𝑟𝑠 (removal from feed + heat exchanger)

• Batch reactors with heat exchange

•  ሶ𝑄𝑔𝑏 (generated heat from reaction)

•  ሶ𝑄𝑟𝑏 (removal from heat exchanger only)

• Multiple reactions

• Example: CSTR during startup (approach to steady-state)

Overview for unsteady state, non-isothermal reactors



Discuss with your neighbors:
Thinking about our energy balance below:

A) I, II, and III

C) III

B) I

D) None of them

𝑑𝑇

𝑑𝑡
=

∆𝐻𝑟𝑥𝑛 𝑟𝐴𝑉

ሶ𝑄𝑔𝑠

− 𝐹𝐴0 σ 𝜃𝑖𝐶𝑃,𝑖 𝑇 − 𝑇0 + 𝑈𝐴 𝑇 − 𝑇𝑎

ሶ𝑄𝑟𝑠

σ 𝑁𝑖𝐶𝑃,𝑖

Which of the following are true?

I. ሶ𝑄𝑔𝑠 can never be negative

II. ሶ𝑄𝑟𝑠 can never be negative
III. ሶ𝑄𝑟𝑠 is > than ሶ𝑄𝑟𝑏 if T > T0

False, if endothermic

False, e.g. T < Ta

True, CSTR inlet effectively 
removing heat



෍

𝑖=1

𝑚

ቚ𝐹𝑖𝐻𝑖
𝑖𝑛

σ 𝐹𝑖0𝐻𝑖0

− ෍

𝑖=1

𝑚

ቚ𝐹𝑖𝐻𝑖
𝑜𝑢𝑡

+ ሶ𝑄 − ሶ𝑊𝑠 =
𝑑 ෠𝐸𝑠𝑦𝑠

𝑑𝑡

෠𝐸𝑠𝑦𝑠 = ෍ 𝑁𝑖𝑈𝑖 = ෍ 𝑁𝑖 𝐻𝑖 − 𝑃 ෨𝑉𝑖 = ෍ 𝑁𝑖𝐻𝑖 − 𝑃 ෍ 𝑁𝑖
෨𝑉𝑖

Often the PV term is neglected, and if there are no spatial 

variations:

• CSTR (when not at steady-state)

• Batch or semi-batch

𝑑 ෠𝐸𝑠𝑦𝑠

𝑑𝑡
=

𝑑 σ 𝑁𝑖𝐻𝑖

𝑑𝑡
= ෍ 𝑁𝑖

𝑑𝐻𝑖

𝑑𝑡
+ 𝐻𝑖

𝑑𝑁𝑖

𝑑𝑡

Energy balance for unsteady state systems



𝑑𝐻𝑖

𝑑𝑡
= 𝐶𝑃,𝑖

𝑑𝑇

𝑑𝑡

𝑑 ෠𝐸𝑠𝑦𝑠

𝑑𝑡
= ෍ 𝑁𝑖 𝐶𝑃,𝑖

𝑑𝑇

𝑑𝑡
+ 𝐻𝑖 𝐹𝑖0 − 𝐹𝑖 − 𝜈𝑖𝑟𝐴𝑉

Unsteady state energy balance:

෍ 𝐹𝑖0𝐻𝑖0 − ෍ 𝐹𝑖𝐻𝑖 + ሶ𝑄 − ሶ𝑊𝑠

= ෍ 𝑁𝑖𝐶𝑃,𝑖

𝑑𝑇

𝑑𝑡
+ 𝐻𝑖𝐹𝑖0 − 𝐻𝑖𝐹𝑖 − 𝐻𝑖𝜈𝑖𝑟𝐴𝑉

Mole balance on species i: 𝐹𝑖0 − 𝐹𝑖 − 𝜈𝑖𝑟𝐴𝑉 =
𝑑𝑁𝑖

𝑑𝑡

Recall relation of enthalpy 
and heat capacity:

Plugging in to get accumulation term:



෍ 𝐹𝑖0𝐻𝑖0 + ሶ𝑄 − ሶ𝑊𝑠 = ෍ 𝑁𝑖𝐶𝑃,𝑖

𝑑𝑇

𝑑𝑡
+ 𝐻𝑖𝐹𝑖0 − Δ𝐻𝑟𝑥𝑛𝑟𝐴𝑉

෍ 𝐹𝑖0 𝐻𝑖0 − 𝐻𝑖 + Δ𝐻𝑟𝑥𝑛𝑟𝐴𝑉 + ሶ𝑄 − ሶ𝑊𝑠 =
𝑑𝑇

𝑑𝑡
෍ 𝑁𝑖𝐶𝑃,𝑖

Gives energy balance on a transient CSTR, batch, semi-batch:

σ 𝐹𝑖0 𝐻𝑖0 − 𝐻𝑖 + Δ𝐻𝑟𝑥𝑛𝑟𝐴𝑉 + ሶ𝑄 − ሶ𝑊𝑠

σ 𝑁𝑖𝐶𝑃,𝑖
=

𝑑𝑇

𝑑𝑡

If no phase change and heat capacities are constant with T, 

𝐻𝑖0 − 𝐻𝑖 = 𝐶𝑃,𝑖(𝑇0 − 𝑇) and we can simplify further to:

σ 𝐹𝑖0 𝐶𝑃,𝑖(𝑇0 − 𝑇) + Δ𝐻𝑟𝑥𝑛𝑟𝐴𝑉 + ሶ𝑄 − ሶ𝑊𝑠

σ 𝑁𝑖𝐶𝑃,𝑖
=

𝑑𝑇

𝑑𝑡



Batch reactor:

Δ𝐻𝑟𝑥𝑛𝑟𝐴𝑉 + ሶ𝑄 − ሶ𝑊𝑠

σ 𝑁𝑖𝐶𝑃,𝑖
=

𝑑𝑇

𝑑𝑡

Couple with mass balance:

𝑑𝑁𝑖

𝑑𝑡
= 𝑟𝑖𝑉

Adiabatic batch reactor with no shaft work:

Δ𝐻𝑟𝑥𝑛𝑟𝐴𝑉

σ 𝑁𝑖𝐶𝑃,𝑖
=

𝑑𝑇

𝑑𝑡

𝑑𝑁𝐴

𝑑𝑡
= 𝑟𝐴𝑉

𝑑𝑁𝐴

𝑑𝑡
=

𝑑 𝑁𝐴0(1 − 𝑋)

𝑑𝑡
= −𝑁𝐴0

𝑑𝑋

𝑑𝑡

If instead of time 
we used space time 
it could be PFR



Combine design equation into energy balance:

Δ𝐻𝑟𝑥𝑛 −𝑁𝐴0

𝑑𝑋

𝑑𝑡
=

𝑑𝑇

𝑑𝑡
෍ 𝑁𝑖𝐶𝑃,𝑖

𝑁𝑖 = 𝑁𝐴0 𝜃𝑖 + 𝜈𝑖𝑋

−𝑁𝐴0Δ𝐻𝑟𝑥𝑛

𝑑𝑋

𝑑𝑡
= 𝑁𝐴0

𝑑𝑇

𝑑𝑡
෍ 𝜃𝑖 + 𝜈𝑖𝑋 𝐶𝑃,𝑖

In previous lectures we have defined:

𝐶𝑃0 ≡ ෍ 𝜃𝑖𝐶𝑃,𝑖

Δ𝐶𝑃 = ෍ 𝜈𝑖𝐶𝑃,𝑖



So energy balance is now:

−Δ𝐻𝑟𝑥𝑛

𝑑𝑋

𝑑𝑡
=

𝑑𝑇

𝑑𝑡
𝐶𝑃0 + Δ𝐶𝑃𝑋

Δ𝐻𝑟𝑥𝑛 𝑇 = Δ𝐻𝑟𝑥𝑛 𝑇𝑟𝑒𝑓 + Δ𝐶𝑃(𝑇 − 𝑇𝑟𝑒𝑓)

− Δ𝐻𝑟𝑥𝑛 𝑇𝑟𝑒𝑓 + Δ𝐶𝑃(𝑇 − 𝑇𝑟𝑒𝑓)
𝑑𝑋

𝑑𝑡
=

𝑑𝑇

𝑑𝑡
𝐶𝑃0 + Δ𝐶𝑃𝑋

න
0

𝑋 𝑑𝑋

𝐶𝑃0 + Δ𝐶𝑃𝑋
= න

𝑇0

𝑇 𝑑𝑇

− Δ𝐻𝑟𝑥𝑛 𝑇𝑟𝑒𝑓 + Δ𝐶𝑃(𝑇 − 𝑇𝑟𝑒𝑓)

Take definite integrals

න
𝑐

𝑑 𝑑𝑥

𝑎𝑥 + 𝑏
=

1

𝑎
ln 𝑎𝑑 + 𝑏 −

1

𝑎
ln 𝑎𝑐 + 𝑏



1

Δ𝐶𝑃

)l n( 𝐶𝑃0 + Δ𝐶𝑃𝑋 − ln 𝐶𝑃0

=
1

Δ𝐶𝑃
ൣ

൧

ln − Δ𝐻𝑟𝑥𝑛 𝑇𝑟𝑒𝑓 − 𝑇𝑟𝑒𝑓Δ𝐶𝑃 − Δ𝐶𝑃𝑇

− ൯l n( − Δ𝐻𝑟𝑥𝑛 𝑇𝑟𝑒𝑓 − 𝑇𝑟𝑒𝑓Δ𝐶𝑃 − Δ𝐶𝑃𝑇0

After integration, multiply both by Δ𝐶𝑃, know that quotient 

rule for ln is that subtracting logs is division inside the log, 

then take exponential of both sides:

*Skipped in class



𝑋

𝐶𝑃0
=

)−(𝑇 − 𝑇0

Δ𝐻𝑟𝑥𝑛 𝑇𝑟𝑒𝑓 − 𝑇𝑟𝑒𝑓Δ𝐶𝑃 + Δ𝐶𝑃𝑇

=
𝑇0 − 𝑇

Δ𝐻𝑟𝑥𝑛 𝑇𝑟𝑒𝑓 + (𝑇 − 𝑇𝑟𝑒𝑓)Δ𝐶𝑃

=
𝑇0 − 𝑇

Δ𝐻𝑟𝑥𝑛 𝑇

1 +
Δ𝐶𝑃𝑋

𝐶𝑃0

=
− Δ𝐻𝑟𝑥𝑛 𝑇𝑟𝑒𝑓 − 𝑇𝑟𝑒𝑓Δ𝐶𝑃 − Δ𝐶𝑃𝑇0 − Δ𝐶𝑃𝑇 + Δ𝐶𝑃𝑇

− Δ𝐻𝑟𝑥𝑛 𝑇𝑟𝑒𝑓 − 𝑇𝑟𝑒𝑓Δ𝐶𝑃 − Δ𝐶𝑃𝑇

= 1 −
Δ𝐶𝑃(𝑇 − 𝑇0)

Δ𝐻𝑟𝑥𝑛 𝑇𝑟𝑒𝑓 − 𝑇𝑟𝑒𝑓Δ𝐶𝑃 + Δ𝐶𝑃𝑇

*Skipped step in class

*Skipped step in class



Can put this into a form:

𝑋Δ𝐻𝑟𝑥𝑛 𝑇

𝐶𝑃0
= 𝑇0 − 𝑇

𝑋 Δ𝐻𝑟𝑥𝑛 𝑇0 + (𝑇 − 𝑇0)Δ𝐶𝑃

𝐶𝑃0
= 𝑇0 − 𝑇

𝑇 = 𝑇0 −
𝑋 Δ𝐻𝑟𝑥𝑛 𝑇0 + 𝑇 − 𝑇0 Δ𝐶𝑃

𝐶𝑃0

𝑇 +
Δ𝐶𝑃𝑋

𝐶𝑃0
𝑇 = 𝑇(1 +

Δ𝐶𝑃𝑋

𝐶𝑃0
)

= 𝑇0 −
𝑋 Δ𝐻𝑟𝑥𝑛 𝑇0 + −𝑇0 Δ𝐶𝑃

𝐶𝑃0



𝑇 =
𝐶𝑃0𝑇0

𝐶𝑃0(1 +
Δ𝐶𝑃𝑋
𝐶𝑃0

)
−

𝑋 Δ𝐻𝑟𝑥𝑛 𝑇0 + −𝑇0 Δ𝐶𝑃

(1 +
Δ𝐶𝑃𝑋
𝐶𝑃0

)𝐶𝑃0

𝑇 =
𝐶𝑃0𝑇0 + 𝑇0Δ𝐶𝑃𝑋

𝐶𝑃0(1 +
Δ𝐶𝑃𝑋
𝐶𝑃0

)
−

𝑋 Δ𝐻𝑟𝑥𝑛 𝑇0

1 +
Δ𝐶𝑃𝑋
𝐶𝑃0

𝐶𝑃0

=
𝐶𝑃0𝑇0 + 𝑇0Δ𝐶𝑃𝑋

𝐶𝑃0 + Δ𝐶𝑃𝑋
−

𝑋 Δ𝐻𝑟𝑥𝑛 𝑇0

𝐶𝑃0 + Δ𝐶𝑃𝑋

= 𝑇0 −
𝑋 Δ𝐻𝑟𝑥𝑛 𝑇0

𝐶𝑃0 + Δ𝐶𝑃𝑋

𝑇 = 𝑇0 +
−Δ𝐻𝑟𝑥𝑛 𝑇0 𝑋

𝐶𝑃0 + Δ𝐶𝑃𝑋

*Skipped these steps in class



𝑟𝐴𝑉 = −𝑁𝐴0

𝑑𝑋

𝑑𝑡

To solve, pick X, know a temperature from energy balance, 

solve for t.

𝑑𝑡 = −𝑁𝐴0

𝑑𝑋

𝑟𝐴𝑉

𝑇 = 𝑇0 +
−Δ𝐻𝑟𝑥𝑛 𝑇0 𝑋

𝐶𝑃0 + Δ𝐶𝑃𝑋

Recall this was for adiabatic batch reactor with no shaft work



If there is heat transfer (non-adiabatic CSTR or semi-batch)

σ 𝐹𝑖0 𝐶𝑃,𝑖(𝑇0 − 𝑇) + Δ𝐻𝑟𝑥𝑛𝑟𝐴𝑉 + ሶ𝑄

σ 𝑁𝑖𝐶𝑃,𝑖
=

𝑑𝑇

𝑑𝑡

FA0, T0

FA, Tሶ𝑚𝑐𝐶𝑃,𝑐

𝑇𝑎1
𝑇𝑎2

From heat exchanger using a coolant (from Lecture 17) 

realizing that heat exchanger on a CSTR, semi-batch or batch 

are essentially the same: 

ሶ𝑄 = ሶ𝑚𝑐𝐶𝑃,𝑐 𝑇𝑎1 − 𝑇 1 − exp
−𝑈𝐴

ሶ𝑚𝑐𝐶𝑃,𝑐
= − ሶ𝑄𝑟𝑏

No shaft work



Batch unsteady state with high coolant rates:

𝑑𝑇

𝑑𝑡
=

Δ𝐻𝑟𝑥𝑛𝑟𝐴𝑉 − − ሶ𝑄

σ 𝑁𝑖𝐶𝑃,𝑖
=

ሶ𝑄𝑔𝑏 − ሶ𝑄𝑟𝑏

σ 𝑁𝑖𝐶𝑃,𝑖

ሶ𝑄 = 𝑈𝐴 𝑇𝑎1 − 𝑇 = − ሶ𝑄𝑟𝑏

For large flow rates of coolant: Ta1≈Ta2≈Ta

𝑈𝐴 𝑇 − 𝑇𝑎 = ሶ𝑄𝑟𝑏

CSTR or semi-batch unsteady state:

𝑑𝑇

𝑑𝑡
=

Δ𝐻𝑟𝑥𝑛𝑟𝐴𝑉 − σ 𝐹𝑖0 𝐶𝑃,𝑖(𝑇 − 𝑇0) − ሶ𝑄

σ 𝑁𝑖𝐶𝑃,𝑖
=

ሶ𝑄𝑔𝑠 − ሶ𝑄𝑟𝑠

σ 𝑁𝑖𝐶𝑃,𝑖



For multiple reactions:
Replace Δ𝐻𝑟𝑥𝑛𝑟𝐴 term with

෍

𝑖=1

𝑛

𝑟𝑖𝑗Δ𝐻𝑟𝑥𝑛,𝑖𝑗

ሶ𝑄𝑔𝑠 = ෍

𝑖=1

𝑛

𝑟𝑖𝑗𝑉Δ𝐻𝑟𝑥𝑛,𝑖𝑗(𝑇)

We can see that if there is only one reaction:
𝐴 → 𝐵

ሶ𝑄𝑔𝑠 = 𝑟1𝐴𝑉Δ𝐻𝑟𝑥𝑛,1𝐴 = 𝑟𝐴𝑉Δ𝐻𝑟𝑥𝑛

This can change with T if 
∆𝐶𝑃 ≠ 0



CSTR startup: Example problem

Propylene oxide plus water reacts to form propylene glycol in 

presence of inert methanol (with H2SO4 as catalyst). The 

reaction is first order in propylene oxide but zero-order in 

water.

1000 lbmol/hr

Water with acid 80 lbmol/hr propylene oxide

100 lbmol/hr methanol75 °F

Products

Water (60 °F)
1000 lbmol/hr

Ta2

Ta1
VCSTR = 500 gallons

A + B → C

(A)

(M)

(B)



Reactor starts with water with 0.1 wt% sulfuric acid at 75 °F

UA = 16000 Btu/hr·Rankine

k(T) = 16.96x1012 exp(-32400 Btu/lbmol/RT) hr-1 

Heat of reaction = -36000 Btu/lbmol (exothermic)

ρA = 0.923 lbmol/ft3, ρB = 3.45 lbmol/ft3, ρC = 1.54 lbmol/ft3

CP,A=35 Btu/lbmol·R, CP,B =18 Btu/lbmol·R
CP,C =46 Btu/lbmol·R, CP,M=19.5 Btu/lbmol·R

Molar densities:

Initial conc. of B in CSTR



At time = 0 (initial conditions of variables Cj):

CA = 0

CM = 0CC = 0

CB = 3.45 lbmol/ft3

Questions:

1. What do T and CA look like during startup?

2. Is steady state reached? 

3. What happens if T(t=0) or CA(t=0) are changed? 

4. What are the conditions where we stay under practical 

stability limit of 180 Fahrenheit?



A + B → C in presence of inert methanol (M). First order in A, 

zero order in B. Write mole balance with rate law:

𝐹𝑖0 − 𝐹𝑖 − 𝜈𝑖𝑟𝐴𝑉 =
𝑑𝑁𝑖

𝑑𝑡

𝐶𝑖0𝑣0 − 𝐶𝑖𝑣0 − 𝜈𝑖𝑟𝐴𝑉 =
𝑑𝐶𝑖𝑉

𝑑𝑡
𝐶𝐴0 − 𝐶𝐴

𝜏
− 𝑘𝐶𝐴 =

𝑑𝐶𝐴

𝑑𝑡
𝐶𝐵0 − 𝐶𝐵

𝜏
− 𝑘𝐶𝐴 =

𝑑𝐶𝐵

𝑑𝑡

𝐶𝐶0 − 𝐶𝐶

𝜏
+ 𝑘𝐶𝐴 =

𝑑𝐶𝐶

𝑑𝑡

𝐶𝑀0 − 𝐶𝑀

𝜏
=

𝑑𝐶𝑀

𝑑𝑡

Constant V

(1)

(2)

(3)

(4)



Heat capacity of species in reactor:

෍ 𝑁𝑖𝐶𝑃,𝑖 = 𝑉 𝐶𝐴𝐶𝑃,𝐴 + 𝐶𝐵𝐶𝑃,𝐵 + 𝐶𝐶𝐶𝑃,𝐶 + 𝐶𝑀𝐶𝑃,𝑀

෍ 𝐹𝑖0 𝐶𝑃,𝑖(𝑇0 − 𝑇) = −22750 Bt Τu h r ∙ Rankine (𝑇 − 𝑇0)

Energy balance for unsteady state CSTR, no shaft work:

σ 𝐹𝑖0 𝐶𝑃,𝑖(𝑇0 − 𝑇) + Δ𝐻𝑟𝑥𝑛𝑟𝐴𝑉 + ሶ𝑄

σ 𝑁𝑖𝐶𝑃,𝑖
=

𝑑𝑇

𝑑𝑡

ሶ𝑄 = ሶ𝑚𝑐𝐶𝑃,𝑐 𝑇𝑎1 − 𝑇 1 − exp
−𝑈𝐴

ሶ𝑚𝑐𝐶𝑃,𝑐

Heat removal of species flowing into reactor:

(5)



CP,A=35 Btu/lbmol·R, CP,B 18 Btu/lbmol·R
CP,C 46 Btu/lbmol·R, CP,M=19.5 Btu/lbmol·R

(5)

(1)
(2)

(3)
(4)

Initial conditions
Variables

Inlet conditions



SST (t=0) = 75 F, CA(t=0) = 0 lbmol/ft3

Actually T (t=0) NOT T (inlet)



SS

After initial time, CA and T reach some steady state

With time (but not exactly proportional)

Temperature



Discuss with your neighbors:
Which set of initial conditions for CSTR startup result in a 
temperature at some point that is greater than 200?

A) T(t=0) = 75 °F CA (t=0) = 0

C) T(t=0) = 140 °F  
CA (t=0) = 0.14 lbmol/ft3

B) T(t=0) = 180 °F CA (t=0) = 0

D) None of them



Following the purple line from above, we can look at the time 
behavior when T(t=0) is 140 °F and there is initially some 
propylene oxide (CA(t=0) = 0.14 lbmol/ft3). Notice the spike in 
temperature when starting. Reaches SS faster but more 
dangerous!
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